Lower and Upper Regularizations of Frame Semicontinuous Real Functions

نویسندگان

  • JAVIER GUTIÉRREZ GARCÍA
  • TOMASZ KUBIAK
چکیده

As discovered recently, Li and Wang’s 1997 treatment of semicontinuity for frames does not faithfully reflect the classical concept. In this paper we continue our study of semicontinuity in the pointfree setting. We define the pointfree concepts of lower and upper regularizations of frame semicontinuous real functions. We present characterizations of extremally disconnected frames in terms of these regularizations that allow us to reprove, in particular, the insertion and extension type characterizations of extremally disconnected frames due to Y.-M. Li and Z.-H. Li [Algebra Universalis 44 (2000), 271–281] in the right semicontinuity context. It turns out that the proof of the insertion theorem becomes very easy after having established a number of basic results regarding the regularizations. Notably, our extension theorem is a much strengthened version of Li and Li’s result and it is proved without making use of the insertion theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variants of normality and their duals: a pointfree unification of insertion and extension theorems for real-valued functions

Katětov-Tong insertion type theorem For every upper semicontinuous real function f and lower semicontinuous real function g satisfying f ≤ g, there exists a continuous real function h such that f ≤ h ≤ g (Katětov 1951, Tong 1952). For every lower semicontinuous real function f and upper semicontinuous real function g satisfying f ≤ g, there exists a continuous real function h such that f ≤ h ≤ ...

متن کامل

Lower Semicontinuous Functions

We define the notions of lower and upper semicontinuity for functions from a metric space to the extended real line. We prove that a function is both lower and upper semicontinuous if and only if it is continuous. We also give several equivalent characterizations of lower semicontinuity. In particular, we prove that a function is lower semicontinuous if and only if its epigraph is a closed set....

متن کامل

Localic Real Functions: a General Setting

A [semi-]continuous real function of a frame (locale) L has up to now been understood as a frame homomorphism from the frame L(R) of reals into L [as a frame homomorphism (modulo some conditions) from certain subframes of L(R) into L]. Thus, these continuities involve different domains. It would be desirable if all these continuities were to have L(R) as a common domain. This paper demonstrates...

متن کامل

Rings of Real Functions in Pointfree Topology

This paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent function...

متن کامل

The ring of real-valued functions on a frame

In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007